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ABSTRACT WA

This paper analyzes mixed methods for the biharmonic problem by

means of new families of mesh dependent norms which are introduced and

studied. More specifically, several mixed methods are shown to be stable

with respect to these norms and, as a consequence, error estimates are

obtained in a simple and direct manner.
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SIGNIFICANCE AND EXPLANATION

) ;

This paper presents a new approach to the analysis of mixed methods for

' the approximate solution of 4th order elliptic boundary value problems. 1In
this approach one introduces a pair of mesh dependent norms and proves the
approximation method is stable with respect to these norms. The error esti-
mates then follow in a direct manner. 1In a mixed method, one introduces an
auxiliary variable, usually representing another physically important quantity,
and writes the differential equation as a lower order system. One then con-
siders Ritz-Galerkin approximation schemes based on a variational formulation

8 of this lower order system, thereby obtaining direct approximations to both

% the original and auxiliary variables. Three particular mixed methods for the

i approximate solution of the biharmonic problem are examined in detail.
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ANALYSIS OF MIXED METHODS USING
MESH DEPENDENT NORMS

I. Babugka.ﬁ J. Osborni, and J. Pitkarantai

1. Introduction L

In [5] Brezzi studied Ritz-Galerkin approximation of saddle point problems arisinc

in connection with Lagrange multipliers. These problems have the form:

Given f ¢ V' and g ¢ W' , find (u,y) ¢ Vx W satisfying

a(u,v) + blv,y) = (£,v) ¥vv eV
(1.1)
b(u,¢) = (g,¥) Vy e W,

where V and W are real Hilbert spaces and a(+,*) and b(+,*) are bounded

bilinear forms on V x V and V x W , respectively.

Given finite dimensional spaces vh c U and wh
the Ritz~Galerkin approximation (uh,whl to (u,y) is defined as the solution of the

< Wt indexed by the parameter 0 < h - 1,

problem:

Find (uh.wh) b, satisfying

au,, v) + blv,y, ) = (£f,v) ¥ vev

(1.2) \f b 5 -
| b(uh.w) =(g,9) ¥ ¢ ¢ W

The major assumptions in Brezzi's results are
(1.3) sup JE‘“’V)‘ >y lul, ¥ uez and ¥ h ,

RGeS Iviu -'0 "V h

h

where ¥y 0 is independent of h , and 2, = {v ¢ Vh:b(v,¢) =0 ¥¢ ¢ WH}. and
(1.4) sup J-'-’J—:,’lfi)ll kel ¥ ¢ cw and ¥h,

vevy v

where ko > 0 is independent of h . Using (1.3) and (1.4) Brezzi proves the following
error estimate for the approximation method determined by (1.2):

(1.5) ﬂu-uhﬂv + "w-whﬂw b Clinf"u-xﬂv-rinf"w-nﬂw) ¥ h,
xevh newh
where C is independent of h .

tInstitute for Physical Science and Technology and Department of Mathematics,
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In [1,2) Babu%ka studied Ritz-Galerkin approximation of general, variationally

posed problems. The main result of [1,2], as applied to (1.1) and (1.2), is that (1.5) holds

provided
latu,v) + blv,y) + bln,e)]
(1.6) sup “VHV - > 10(Hqu + Hw“w) ¥(u,y) ¢ vh x wh and ¥ h,
(v,¢)e V. xW w
h 'h
where 5> 0 is independent of h . It is clear from [1,2] that (1.3) and (1.4) hold if

and only if (1.6) holds. (1.3)-(1.4) or, equivalently, (1.6) is referred to as the sta-
bility condition for this approximation method.

The results of [1,2,5] can be viewed as a stratagy for analyzing such approximation
methods: the approximation method is characterized by certain bilinear forms, norms (spaces),
and families of finite dimensional approximation spaces, and if the method can be shown to
be stable with respect to the chosen norms, then the error estimates in these nomms follow
directly, provided the bilinear forms are bounded and the approximation properties of V

h

and “h are known in these norms. These results can be used to analyze,for example, certain
hybrid methods for the biharmonic problem [5,6]. The results of [1,2] have also been used
to analyze a variety of variationally posed problems that do not have the form (1.1).

There are other problems of a similar nature, however, where attempts at using the
results of ([1,2,5] were not entirely successful since not all of the hypotheses were satis-
fied: specifically, the Brezzi condition (1.3) or, equivalently, the Babufka condition
(1.6), is not satisfied with the usual choice of norms, i.e., the approximation methods
for these problems are not stable with respect to the usual choice of norms. This is the
case, for example, in the analysis (7] of the Herrmann-Miyoshi [15,16,20] mixed method for
the biharmonic problem. 1In the analysis of this method a natural choice for both "‘"V
and H-Hw is the 1lst order Sobolev norm; however, this method is not stable with respect to
this choice of norms. As a result of this difficulty the error estimates obtained in (5]
are not optimal. A similar difficulty arises in the analysis of the Herrmann-Johnson [15,
16,17) and Ciarlet-Raviart [9] mixed methods for the biharmonic problem. In later work of Scholz
[23] and Rannacher [22] optimal error estimates were obtained for the mixed methods of

iarlet-Raviart and Herrmann~!Miyoshi. In a forthcoming paper Falk-Osborn ([12] develop
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abstract results from which optimal error estimates for these and other problems can be
derived. However, in neither the work of Scholz [23], Rannacher [22], or Falk-Osborn
[12) is the systematic approach of Brezzi and Babu¥ka used.

It is the purpose of this paper to analyze mixed methods for the biharmonic problem by means
of the results of Brezzi and BabuZka. This is done by introducing a new family of (mesh
dependent) norms with respect to which the above mentioned mixed methods (Ciarlet-Raviart,
Herymann-Miyoshi, Herrmann-Johnson) are stable. Once the stability condition has been
checked and the approximation properties of the subspaces Vh and "h have been determined
in these new norms, the error estimates in these norms follow immediately from the abstract
results of Brezzi and Babu¥ka. Error estimates in the more standard norms are then obtained
by using the usual duality argument. The results of this paper were announced in [21]. We
also note that the methods employed in this paper have been applied to two point boundary
value problems in [3].

Section 2 containsa reviewv of the convergence results of Brezzi and Babufka. In
Section 3 we introduce and study the mesh dependent norms and spaces used in the analysis
in this paper. In Section 4 we treat three examples previously analyzed in the literature
and show how error estimates can be derived from the abstract results in Section 2, used in
conjunction with the mesh dependent norms introduced in Section 3. These examples are all
mixed methods for the biharmonic problem. The error estimates in the standard norms that
are obtained in the present paper and those obtained in [12], using different techniques,
are the same.

Throughout this paper we will use the Sobolev spaces W = Hm(n), where Q is a
convex polygon in the plane and m is a nonnegative integer. On these spaces we have the

seminorms and norms

= 7 [ Io% anl/?

Iv!
|a|-m Q

‘m i ,vlm'n

2,..1/2
vl =avl = § [ [p%[%an/? .

il al<m Q

Hg(ﬁ) denotes the subspace of H™(Q) of functions vanishing together with their first
m-1 normal derivatives on T = 30. We also use the spaces H Q) = (Hz(n))' (the dual
space of Hg(n)) with the norm on H‘m(n) taken to be the usual dual norn.
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2. Abstract Convergence Results .

In this section we review certain results on the approximate solution of saddle

point problems. . é

'

Let Vh and Wh be real Hilbert spaces (indexed by the parameter h , where 0 ~ &

P——

with norms “-HV and “-Hw , respectively, and let ah(-,') and bh(-,') be bilinear
h

o

forms on Vh x Vh and Vh W respectively. We suppose

!

(2.1) la (@) | <xjluly, v, ¥ wvedy,
soh h i

(2.2) bt | <kl ey, v uwelV, ¥ ¢l , i
h h i

where Kl and K2 are constants that do not depend on h . j

We consider the following problem, referred to as problem P :

. .
Given f ¢ V£ and g ¢ W“ , find (u,y) e Vh x wh satisfying

(2.3a) ah(u.v) + bh(v,w) = (f,v) ¥ v« Vh .
(2.3b) bh(u,w) = (g,¥) VvV ¢ ¢ vh ‘
where (+,+) denotes the pairing between Vh and its dual space Vﬁ , or between
{
L]
“& and a& :

We shall consider this problem for a subclass of data, i.e., for (f,g) <« D , where D is
. Ll
a subclass of Vh x u& . We assume that P has a unique solution for all (f,g) -D .
We are interested in the approximate solution of P . Toward this end we suppose we

are given finite dimensional spaces Yy, € Vh and W S wh s, 0<h<1l, and consider the

following problem, referred to as problem Ph g

Given (f,g) ¢ D , find (uh,wh) € Vh x wh satisfying

(2.4a) ah(uh,v) + bh(v,wh) = (f,v) v vV € vh ’

(2.4b) bh(uh,w) = (g.,¢) v $ew .

We now regard u, as an approximation to u and wh as an approximation to U .

h
Regarding problem Ph we suppose

lay ta,v) |
(2.5) v:tzzp —“m—— Z Yo llull‘,h v uez and ¥ h ,
h h
where Yo > 0 is independent of h and zh z {v e vh:bh(v,¢) =0 N P wh-,

and




1
T~

S e T G o)

lbh(v.w)l

(2.6) sup

> k el ¥V ¢ W and ¥ h:,

-0

veV, Hvﬂv
h

iy h
h h
where ko > 0 is independent of h . We now state the fundamental estimate for the

errors u - u and ¢ - wh -

h
Theorem 1 (Brezzi [5]). Suppose (2.1), (2.2), (2.5) and (2.6) are satisfied. Then

Problem Ph has a unique solution (uh,wh) for each h and there is a constant C ,

independent of h , such that
(2.7) lu=u ft, + Hy=y li < c( inf [llu-xll + inf lly=-nll,, )} ¥ h .
» th * wh X th vh n ewh kh
(2.5)-(2.6) is referred to as the stability condition for this approximation method.
In many applications of Theorem 1 the spaces Vh and wh and the forms ay and b _

do not depend on h , i.e., Vh =V and Wh = W are fixed Hilbert spaces and a =a

and bh = b are fixed bilinear forms and V x V and V x W . The space vh and W

typically are spaces of piecewise polynomials with respect to a triangulation Th of some

h

domain by triangles of size less than or equal to h and, of course, depend on h . 1In

the applications in this paper, both the spaces V , W and Vv _, W

' Yh h h depend on h, i.e.,

are mesh dependent; the constants K. ,K , and ko, however, will be independent of h

2 e
(cf. [2, Cp. 7]). 1In these applications the solution (u,y) of (2.3) is independent of &
and lies in Vh x WL for all h . Thus the estimate (2.7) yields convergence estimates
for u-u, and b=y, provided the families {Vh} and {wh} satisfy an approximobility
assumption. For typical finite element aprlications this would involve the assumption that

inf Hu-x"v and inf Hw-dlw tend to zero as h tends to zero.

X th h neuh h

«5a
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3. Mesh Dependent Norms and Spaces

In this section we describe the mesh dependent norms and spaces we shall use in the
paper. Let  be a convex polygon in the plane. For 0 < h <1 we let Th be a tri-
angulation of _ by triangles T of diameter less than or equal to h . We assume the

family of triangulations {Th} satisfies the minimal angle condition, i.e., there is a

constant o such that

hT
(3.1) max — <o vh,
TeT, Pr

h
where hT is the diameter of T and [ is the diameter of the largest circle contained

in T , and is quasi-uniform, i.e., there is a constant 1 > 0 such that

(3.2) 1%: £t ¥TeT and ¥h

Let [ = v} 3T . We define

2 1 2
o o={ucH (Q).ulT cH(M VT eT)

and on H2 define the norm

h
e T ) R LT
2,h T 2,7 T v
h h
where, if T' = BTl n 3T2 is an interior edge of the triangulation Th , we set
J %% = 331- - 335-, where 7 is the unit normal to T' exterior to b , and if
: = v v u 34
™' is a boundary edge of T _, we set J — = — .
h v o v
1 ;
On H () we define
2 e [ |ul2dx +h [ [u[z ds
0,h a

T

and then define Hg to be the completion of Hl(Q) with respect to "'"0 he Hy can
’

0
h
be identified with LZ(Q) ® L ) .

24Ty
We note that norms similar to “‘“0 h and ﬂ-"2 h have been used in a different
’ ’
manner in Douglas=Dupont [11] and Thomas {26].
For k » 1 a fixed integer we define

(2.3) s, = {vec v, cp. ¥ TeT)

where Pk is the space of polynomials of degree k or less in the variable Xy and Xy

It is clear that sh is contained in H: and Hi .
wbe
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We now prove several lemmas that are fundamental to the analysis of this paper. i
: 4 These proofs are all closely related to the ideas used in the proof of the Bramble-Hilbert
lemma [4]. Prior to stating the first of these lemmas we describe the notation we will
use and state some well-known results that will be used in the proofs.
Let T be an arbitrary triangle and let T be the reference triangle with vertices
(0,0), (1,0) and (0,1). Then there is an invertible affire mapping F,r(i) = BT:E + bT =
F(x) = Bx + b such that T = Fn (f). This mapping leads to the correspondence X ¢ T © x =
FT(:E} : T between points in T and points in T and the correspondence (V:T »R) ©
(v=vos r,;lvr + R) between functions defined on T and functions defined on T . Note
| that v(x) = v(x).
It is easily seen that
- = - -
3 (3.4) e = H 5w E e,
If v = u(x) denotes the outward unit normal to 3T at x and v = v(x) is the outward
. unit normal to 4T and x , then
(3.5) vix) = B8HT s (B vix |
where t denotes transpose. Let the sides of T be denoted by Ti, i=1,2,3. I’rl denotes the
4 area of T and [’rﬂ denotes the length of T{. The seminorms vl o p and v , ¢ are relatedby
3 ' ’
1 TP N
E | (3.6) Mﬂ.,’r < |detB | B IV‘Q,T
2 ' and
|
4 (3.7 vl, o< laet B |72 5t 5]
lolg,p < laet 8 |72 08™00% 9] &
} where ||Bll is the norm of B induced by the Euclidian vector norm (cf. [8 , Theorem
| 3.1.2]). We will also use the estimates
F 4 h,r -1 ha
3 (3.8) Bl < == , B <=
‘.:] OT DT
! (cE. [8, Theorem 3.1.3]). We also note that |det B = ‘E—’» . Finally we remark that
i there is a constant C = C(T) such that
» (3-9) s P i r & o = k+1 ,~
inf llu p"k+1,'l‘ < Clu]k+1',r ¥Y¥ueH (T)
A prP \
1 k
(cf£. [8, Theorem 3.1.1]).
g
¥ o,
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Lemma 1. There is a constant C such that

Hthidm% ¥ ucs

% a

Proof. It is sufficient to show that

pof [u[zds < Cﬂung , A - R
Ty
/2

Now (f [\;lzdx)l/2 and ([ I&,zdx + !Glzds)l are both norms on the finite dimensional
T T ar
p L %
space Pk(T) = {p]i 1 p € Pk} and hence there is a constant C(T) such that
[ li|%as < e [ |iax ¥ e () .
aT T
Let T ¢ Th and suppose T is the image of T under the mapping F(x) = Bx + b . Then,

using (3.1), (3.2),and (3.6), we see that for any u ¢ P we have

k
[lulPas =1 [ |u]%as
3T i=1 Ti

[ES

I [ la)?)rylas
8 X

<o max (v [ [af® ax
A ey T
- -1 2
< C(T) max|T!||det B [ |ul® ax
=3 T
- T 2
1cﬂ)m? h”ﬁ+"ﬂoﬂ
- A h
@ c(t) a|T| 'r2 "“"(2, 3
m DT ’
TS e G
. cu) aim] (Z) Low?
- T pT hT 0T

A

Bl o
C('I‘)cvh,r Ju“O,T

(S

o -1 )
€Ty ot h "ﬂoﬁ .

NPT




R
e

Therefore
2 2
nf fulfas<n [ [ lul’es
rh TiTh 3T
< e o § ol
s Tig, 0.3
R
A 2
5cm)uruw0£

fo .
r all u € sh

Lemma 2. There is a constant C such that
=1
|Iul|2'hichllu"l'Q S

Proof. Since {Th} is quasi-uniform it is well-known that

e -2 2
I huﬂz'T <ch IlullllQ ¥ uE B
TeTs
Thus it is sufficient to show that
-1 du,2 -2 2 T
h { |a 8v| ds <ch ” il o ¥ W ® .
h

( Iﬁlzdx + [ |ViG|2d§)1/2 and lldl, - are both noms on the finite dimensional
T T :

space Pk(i) and hence there is a constant C(T) such that

£@) = [ [v,u1%as < e ¥ 4¢P (D)
a,r X - 1,T k
Clearly E(G+p) =E(M ¥ pep . Thus
~ ~ s 2
E(u) = E(u + p) < C(T) llu + p“l,f ¥ p el

and hence, using (3.9), we have

E(3) < c(T) inf llu + pl

1,7
pePo

_<_C('i') |\;l1 $ -

Now let T ¢ T, and assume T is the image of T under the mapping F(x)

h

Then, using (3.1), (3.2), (3.4), (3.6), and (3.8), we see that for any u ¢ Pk ve have

-9~
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J12)%s =7, Ly w 01 5vix |2a
3'1"3“ Zl,{ l - b4 ] S

I(B-l)t(viﬁ)(F-l(x))lzds

fB-llz max T

1

1v.01%a8
X

A

el
aT

2

2
It 1,7

chs™t

A

max |T;| ]G]

< c e ? max |7y |[aet [ 181 [u
o (B Y2 e ReA2 <

T T 2

< cm[——] [—7] by 1} Ju]
OT | OTJ T T LT
W

< C(T)[—f] [—T") 5.1?..‘. hi' !u'i T
°q T Ty '
A0 A =

< C(T){E} 041'&-]—‘-‘- e Iul2

= Pa 1,T

Therefore we obtain

-1 > -

O B as <« Iat 2P

v
I‘h 'I‘eTh aT

cm o« 5 072 |ul
T

T(h

2
1,T

1A

< C(f) o R Iuli 5.8
r

This ~ompletes the proof.

=10~
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Lemma 3. There is a constant C such that

< i £
u}f Ilu-,‘.llo,h i h |u|2,9
x:sh

for all u ¢ Hr(i) and all h , where 1 <r and 1 <R < min(r,k+1).

Proof. We define two interpolation operators that will be used in the proof. For
u < HZ(T) let ITu € Py be defined by
J - ax =0 WEER
T
v febP and ¥ sides T' of T ,

/] tw-1wfax=0 e

TI
and

u(a) - (ZTu)(a) =0 ¥ vertices a of T .

Then for u < Hz(ﬂ) we let Ih ues be defined by

(1 u)‘ = I (ul) .
S T
For u € H (Q) we define the interpolant in a different manner. Here we consider
only the case k = 1. Let the vertices of Th be denoted by zl,...,zm and let
Wyree s Wy be the basis for Sh defined by wi(zj) = aij . Set sj = (supp wj) nQ

and let ]sj) be the area of sj . Now, following Clément [10] we define ihu by

IS u dx
S W zm 3 w, .
LT LR

We first consider the case r > 2 and
By the standard approximability results for Sh we

£ > 2 . 1In this case we obtain the desired

result by estimating [llu - Ihuuo'h 5

have
2 2% 2
{ Ju - Ihul dx < Ch |u|2'9 ;

Thus it is sufficient to show that
2 20=1; 2
I [u - Ihul ds <Ch |u|LQ .
iy

wil=

R oo

e 2 o



Suppose u € Hﬂ' (T) and set E(U) = f \ﬁ - Ii‘ﬁ\zdé. By the trace theorem and

aT
the Sobolev imbedding theorem we have

A ~ a2
E -
(u) < c(T) “““1,'1'
and since E(u + p) = E(Q) ¥ p ¢ Piy o+ Ve thus have

E(A) < c(f) inf la+ pl? 2 < cth |u]? -
— 2, - 2,7
pePl_l

Now let T ¢ Th be the image of T under the mapping F(x) = Bx + b .

Then

5 1) =
! Ja - I,i;\ll lTi‘ds

“u - ITulzds = Xi
aT 'I‘:.'.

- [y
< max|t!| [|u - 1.0]%as
Pl x

< max |1| e \G‘i 4
i 4

< max |1} |c() |det o) w2
i ’

an 28
<c@|f] == [ET—] lul?
(o]

R, A7 WO 5wy




R

el

afl

i
3
]

Therefore

{ lu-tuPass [ [ lu-1g0 6
Fh T(T% aT
»

P lul} o
7T g

h

= cm of n2tt Iulzg 2

Ho)
This completes the proof for the case r,% > 2 .
For the case r >2 and & =1 or r = 2 =1 we estimate llu - Ihullo e Clément

{10) has shown that
fu - T,uby < ¢ hlaly .
By a slight modification of the proof in [{9] we obtain
([ |u- ihulzds)l/z <cnlul, .
The desired result now fo{‘iows.
Lemma 4. There is a constant C such that

' =2
mflﬂu X"z,hf_Ch Iull,fz

xeshnHO
for all u € H (Q) n ug(m and all h , where 2 <r and 2 <1Z < min(r,k+1).
proof. Let Ih be defined as in the proof of Lemma 3 . Note that Ihu < sh al Hé if
u € “r n Hé . sSince, by standard approximability results we have
2 22-4 2
” |
Ip lu Lty <Ch lull'g,
it is sufficient to show that
au - T u) 2
h 22-3 2
il_' [a = | ds < ch |u|i'9 .
h
We next observe that
o A2 - 0,
[ 19stu = T4d) [“ds< oD o] ¥aeH (T
?i x b — 2,T

Now let T ¢ Th be the image of T under the mapping F(x) = Bx + b .

=13~

L% TN

P




P R

3
]
;
:

Then

r 3 2 . 2
LS - = | - |
af o (u l,ru)l ds Si '{" ,[‘T‘x(u ITu)l v(x) ! “as
i

i@ o o o3
i i [B™) " Ve(u - Tou:1%ds
i

G g ~ A AL 5
&1 £ iB7) Vo u - 120) (%) 177} |as
i

1,2 - 2 2,0
< 13717 max ]Til { 19,00 - lfu)l2ds

b

2

< e e max|ry|[8)2
’

( ha 2 h 28 ™
T e i b T 2
CT — —_—
= ()l . o HT (u]‘LT by

Ay 1A 2

c(m |T| 4 b3 223 |2

S T 2,T
P

<
Therefore

2 3 2
f |JT_| dsf_z {TIR(U- ITu)l ds

<o of h23|y)?

{ele

which completes the proof.
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4. Applications

In this section we analyze three mixed methods.

| a) Ciarlet-Raviart method

' Consider the biharmonic problem
Azw =g in @

U= L =0 on T = 23Q

(4.1) Ty

\ -
where  is a convex polygon in the plane and g is a given function. If g ¢ H 2(Q)
then there is a unique solution ¥ ¢ Hg(Q) of (4.1). 1In addition the following regularity

result is known for this problem: If g ¢ H-l(Q). then VY € H3(Q) n HE(Q) and there is

a constant C such that
(4.2) holl, < cligh_, vV gen T .
Using the well-known correspondence between the biharmonic problem and the Stokes problem,

3 this regularity result can be deduced from the regularity result for the Stokes problem

proved in [18] . We assume g ¢ 1t (@) throughout this section.

We now seek an approximation to the solution | of (4.1) by a mixed method, i.e.,

we introduce an auxiliary variable (u = -Ay for the method of this subsection), write

(4.1) as a second order system, cast this system into variational form, and then consider

the Ritz-Galerkin method corresponding to this variational formulation.

Thus we let u = -Ay and write (4.1) as

Au=-g
(4.3) Ay +u=0 in Q

i Wi
Y = B gon'l .

The desired variational formulation of (4.3) is obtained by multiplying the 155 equation

| in (4.3) by ¢ ¢ Hi n Hé ; the 229 equation by Vv ¢ Hg , integrating the resulting

equations over O , and integrating the first one by parts over each T ¢ Th' By means

%)
5 of this process we arrive at the following problem:

- Given g « H-l(ﬁ) , £ind (u,) € H: x (H: n H;) satisfying

T e R : TR T TN 1) ey e TR E
‘ g

bl ol S

o 5PN Y AT A

I e

A e, N O TP, SR

T ) A TR A W I 2 1




A A BN e

RN 1 AR, b e

!

B e R

fuvax-§ [vavax-[ viaEres=0 wv.H e
Q TeTh P I‘h
(4.4) : X
J [ uvovax - | u(J;lf-)ds=-fq:dx ¥ - Hf'H, A
TeT, T P s 0 e 4
i ‘h X
Using the regularity result (4.2) one can easily show that if . is the solution of (4.1°

and u = -Ty , then (u,y) is a solution of (4.4), and if (u,7) is a solution of (4.4),

then  is the solution of (4.1) and u = -AY . (4.4) is an example of problem

S = 0 . = . = 2 1 . = . =
Section 2 with Vh H, I “Vh ] “O,h r Wh HonH il "Wh = Nz,h » 3, (uw) =

in

v

f u v dx, and
Q
Y
b (u,¢) = [ usyvax - [u@ =) ds,
n TT, T T i
il h
(and with g replaced by =-g). Here the subclass of data for which (4.4) is uniguelv

solvable is D = O x H-l

) .
As pointed out above, H. can be identifies with L,(?) = L,(I,). Under this
identification, Hl (Q) is considered a linear manifold in H: through the mapping
1 2 (¢}
H(Q) > u -~ (u.u|rh) €L,(0) @ L) =H .
Thus an element u = (;,:) € :.z(m ® Lz(rh) is considered to be in Hl(Q) if uw e u ()

and ;'r = U . To be completely precise b, should be defined by
h

b (u,0) = ) ]\:Awdx - v @ %) ds

'reTh T rh
£ = (@3 eHl =L (D L) and ¢ ¢ H. . Note that
or u u,u eHh 2 2 (T ani ¢ € H . e a
(4.5) b, (u,0) = - %u - W ax

for u e HY(R) and v ¢ “i . We further note that it is immediate that (2.1) and (2.2)

are satisfied with constants that do not depend on L .

For finite dimensional spaces we choose Vh = Sh and wh = Sh n H;(‘.) , where S

is defined in (3.3). Problem Ph thus has the form:

W
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Given g ¢ H-l(f), find (uh,: ) S

satisfying

T

f e V. x W
| h ¥ |
| ( 3 1

f [uhv dx + ; f v:_'_'vhdx - Ff vi(J W)dx =0 [ER

Q Te h i "
i)

‘ x f »~ - Od

i S ; i uhf sdx - ’f un(J ?:ﬁds ] gedx ¥ ¢ W

( ely, 7 ™

Using (4.5) one easily sees that the approximation procedure determined by (4.6) is the
same as that considered by Glowinski [14] and Mercier [19] and further developed by
and to

Ciarlet-Raviart [9]. Note that this method yields direct approximations to .

u = -Ay (the stream function and vorticity in hydrodunamical problems).

We have already observed that (2.1) and (2.2) are satisfied, 1In order to apply

Theorem 1 we must check the stability condition (2.5)~(2.6).

e e R

é e Theorem 2. There is a constant Yo > 0 , independent of h , such that
If u vdxl
A
i sup —p——— > y, llull Ve g
| ez “v"o.h 0 0,h h
i n
i i.e., (2.5) is satisfied. 1
E
Proof. Using Lemma 1 we have
| [ uvax] | [ uvax]| '.
Q
] i S - PR i
! vez_ Yok vez, clvl g
- -1 3
1 c HuHO E
1 : §
4 2 Hullo'h ¥ Zh ; §
! - i
‘ where C is independent of h . Thus (2.5) holds with Yoy &0 . . 1
-~ i
Now we consider (2.6). Let § = {v e S: [ vax=o}.
&
Lemma 5. There is a constant € >0, independent of h , such that
[ v « v¢ax|
i o)
4 inf sy 2 4G ¥h.
veS vesS

h h HvHo'hH¢N2,h




Proof. We first note that

lfTv.Vde| U':’V'V»?dx[
¥ e I vl 0
(4.7) inf sup-— - = inf sup —————— _
N ves, "V"o,h"’“z,h ves, ves, Hv"olh “V"2,h

This is a consequence of the fact that an operator and its adjoint have equal norms.

Given v - sh we choose ¢ to satisfy
{¢£§h
J9% +vgan=[veEax v £e§ .
ta 0 %

Letting £ = v and using Lemma 1 we obtain

2 2
(4.8) [ Tv - Uy dx = ;l:v ax > c, livily

where C2 > 0 is independent of h .
Now let ¢ be defined by

Ve R = {uen(D):f uax = 0}
Q

| 9 - vEax=[vEax v EeR(D) .
)

Q
Then %% =0 on T and, since O is convex,
(4.9) llspllz < C||vl|0 .

¢ is the Neumann projection of ¢ into éh and it is well-known that
(4.10) e = ¢l < cnilel, .

Let ¢ be the piecewise linear interpolant of ¢ .

Since ¢ «¢ Hz(f!) and %% =0 on T we see from the definition of Il-ll2 h and
’

from (4.9) that
(4.11) Ihpllz,h = IIwII2 X c||v||0 .
From Lemma 4 with k=1 and r = 2, and (4.10) we have

(4.12) e - @l

S
a,p <191, < vl

Using Lemma 2, (4.9), (4.10), and standard approximability results we find that

«lg=

b

:
|
&
§
E
§
¥
?

TR T T AT S NI I I (e




: (4.13) he = 3, cenhe - 3
-4 1 - = _=
) sch e =gl +le -l
} <cn mldn, + nid)
- 2 2
k. 2 cilvﬂo .
: Now, using (4.11)-(4.13) we have
(4.14) |I\:l!2'h Sk~ «\=|I2’}1 + llg - \allz'h + |I\:I|2’h
<G Ilvll0 ¢ Ilvllo'h
g where C3 is independent of h .
E Combining (4.8) and (4.14) we get
F If vv . v ax|
(4.15) & - A
4. inf sup —— * i > 5
E veS, veS I ”0,h ""”2,1’1 5 2
; h h
J The desired result now follows from (4.7) and (4.15).
Theorem 3. There is a constant k0>0, independent of h , such that
4 !bh (v,¢) |
4 (4.16) sup Tl > ko"‘:uz,h ¥ ¢ o€ W and ¥ h ,
; vev, 0,h
3 h
E i.e., (2.6) is satisfied,
o 1 » = P - &
Proof. Let ¢ < W, and set e = Tor £ ¢ d . Then le|<clgl and ¢ =¢-e cs,.
By Lemma S5 there is a vy € éh such that
(4.17) b (v, ,¢) = b (v.,8) = = [ W, + % ax > 1612 > Hel2 - c,len?
; i ), i 2 ARG LAz SV S Dot VYEDER . AT 0
“, and
(4.18) ”vluo,h < CII\=I12'h < Cs"""z,h i
We also know that
,2" 2 5
k- (4.19) -b, (¢,¢) = [ [7 ¢]%ax > c el g
v ‘
and
(4.20) II»'IIO'h ¢, Ilwl!z'],l .
=19~




Now let v = vl - C4C;1 ¥ . Then, using (4.17)-(4.20), we have ’
(4.21) b, (v,¢) > leh?
i o B 2,h
and -
-1
(4.22) IIVIlo'h 2 (C5 + C4 c, C6 ) ”'”2,}1 «

-1.-1
Combining (4.21) and (4.22) we have (4.16) with C = (Cs T c Ple chen ol MiRas

4 7 76

We are now ready to apply Theorem 1 to analyze the Ciarlet-Raviart method. We

obtain L
““'“h“o,h + 1y - "’h“é,h <c( inf [llu - X"o,h + inf lly - nllz'h)
x‘rvh newh

: Suppose Y ¢ n'(m + ¥ >3, and suppose k > 2. Using Lemmas 3 and 4 we
obtain
(4.23) bu-ull 40y =-ul,  <ch® 2
h 0O,h h 2,h — S
where s = min(r,k+1). From (4.23) we get
{
3 < s-2 !
,‘ (4.24) lla uh"O <Ch I wlls 5 :
: In addition, (4.23) yields the estimates {

(4.25a) (f lu-ul?at? <, =
! s
% (4.25b) (7 teenl oM e e, |
1 R 2.7 - s
3 Te"'h
1 |
i and
1 My 2. 172 3/2
i (4.25c) «f o et |“as) / <cn®” r ol .
I
h
i We now derive an estimate for ¢ - dahll1 by means of the well-known duality argu-

ment. Given 4 ¢ H-l(m » let € be the solution of
' 4% = a in Q@

0=220 on .
v

If we let w = -A8 then from (4.2) we have
(4.26) Ilﬁll3 + I|wl|1 L clldll__l .
Also, from the discussion following equations (4.4) we know that the pair (w,?)

satisfies

6 e
(@,0) ) = =8, (V)W) = b (w,¢) = b (v,8) ¥ (ve) c BN o Hg).




Setting v =u - u_ and

¢ =

h
Galerkin equations (4.6) we aet

v",-

¥, . using the exact equations(4.4), and the *itz-

“h

(@, v - wh)o = -ak(u o uh,w) - bh(w,t - th) - bh(u - uh,‘)
= -ah(u "W z) - bh(w ~ 2 - ;h) - bh(u - uh,4 = 1)
¥ (zee) ?h ” Wh i
Thus, using (2.1), (2.2), (4.26), and Lemma 3 and 4 we get
- - - i -zl u - f! ing e
f(a,v bh)[ < c(liu uh"o,h + Y Uh”Z,h) zl?é llw ZLO,h + hu - ug o.h }?m 2,5
(4.27) h o4
<Ch Ndﬂ_l(ﬂu - uh"o,h + lly - uh”z,h)'
Finally, combining (4.23) and (4.27), we have l
!(dl‘\'/ = )
h s-1
5 o~ = |
(4.28) Iy by sug1 T, g=Coh ol
deH " (D)
where s = min(r,k+1).
Estimates (4.24) and (4.28) improve on those in Ciarlet-Raviart [9]). Scholz [23]

obtained (4.24) under the assumption that I is smooth. (4.24) and (4.28) were also

obtained by Falk-Osborn [12]. Note that the appicach of this paper does not yield error
estimates for the case k=1 for the method studied in this subsection (and also for the

method of Subsection b); for this case the reader is referred to Scholz [24].
-3/2
s=3/ )

Using

L _~estimate techniques Scholz [24] has shown that nu-uhuo = 0o(h under different

assumptions than those made in (4.24). 1In ([25] it is shown that in any subdomain

Qo cc @, Hu-uhﬂ

ciently smooth.

is of "nearly" the same order as Illy=-y Il . _, provided . is suffi-
ot.Qo h 0,8

Finally we note that our approach allows the treatment of the case when
g € (Hﬁ)' - H-l(ﬂ). For example, we could treat the case where g 1is the Dirac func-
tion, which corresponds to a concentrated load in plate theory.

Estimates (4.25) are new for this problem. (4.25c) provides an estimate on the rate
across interelement boundaries is

at which the jumps in the normal derivatives of wh

converging to zero and also contains the estimate

3y, 2
[t e cow®™ ¥ gu_ .
v - s

r
-21-
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i

b) Herrmann-Miyoshi method

In this subsection we consider another mixed method for the approximate solution of
(4.1). 1In this method the auxiliary variable is the matrix of second order partial

derivatives of

' &
i i = L L i £ \'4 =
For T h and v (vij)' 1<i,j <2, with vij H (T) and 12 vy, we
set
M (v) = {2 ViV,
L haiet B0
and
mow= P v
“ o R
where v = (vl,vz) is the unit outward normal and 1 = (71,12) = (vz, -vl) is the unit
tangent along 3T . We note that
2 v
¢ 3 & ’
(4.29) 3 [rowy, a2l ol S vl n f o v 24 u_tv) 2 ras
X, - L L ) S T

o 3
i,4=1 T ij Sxi xj axj aT

for all ¢ ¢ Hz(T). On

Vi@ z{ve(v,),1<i,j<2:v, = culm vreT , and
h & ij = ond h

v Vo
12 21% i3
HV(Y) is continuous across interelement boundaries}

we define

2 2 2
v = e = M d
ety b zi'j £ 1j! dx + h { [M(v) |“as,
x h
where, on an interjor edge T' = art o a1’ of Th' we set M(v) = le(y) = MvZ(Y) '
and on a boundary edge T' of Tﬁ , we set M(y) = Mv(y). Then we define Vh
o
to be the completion of Uh with respect to Hy“o h - Itis clear that
’
2 1/2

1.2 It
(4.20) Pon's (Zi'j vilo,n
for all v ¢ lﬁ(@) SR IR 6 o0s) [ I e B 2 S TR V.. € HI(Q)}. When we use the

. : - S s S | Rl ) LR
norm H-HO h it will be clear from the context whether we are applying it to scalar-

’
valued or matrix-valued functions. As in Subsection a we let Wh = H: n Hé . Then the

mixed method studied in this subsection is based on the following formulation of (4.1):

=35
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Given g ¢ H-l(ﬁi, find (u,ple ¢ x W satisfying

h h
{2 2 2%y A
S TR TR - v, —==X—ax+ [M (WIFds=0 Vv U
gt e i3 13 A ij 9%, 9x, Y av - h
i,j=10 i,j=1 T« - PR r
| h h
{
(4.31)
2 2
¥ .ai = - 2 » )
Z L uij axing dx + [ M (u)J 3, 48 £ gedx ¥ ¢ ¢ Uh.

i,j=1 T‘Th T h

Using (4.29) we can easily establish the relations between (4.1) and (4.31). I1f ¢ |is

2 {
the solution of (4.1) and uij = ;%—%;— , then (u,y) 1is a solution of (4.31), and if
3%, 9%, 2

a®,
(u,”) 1is a solution of (4.31), then ¥ is the solution of (4.1) and uij o

ax, ax,
(4.31) is an example of problem P with Vh and Wh as above,

a (u,y) = zi,j { Wy dax ,

and
b g =%  J-] %y [ rwa a
b (u,¢) = T u,, =——— dx + M(u)g = ds .
h L g p 11 T, av

Letting sh be as defined in (3.1), we consider the approximate problem Ph with

VS e Wl S g ¥y € 80

and
W, =S _n Hl(o)
h— h o.- .

With this choice for the forms ah and bh and spaces vh and wh, problem Ph

describes the Herrmann-Miyoshi method [15,16,20]. Note that with this method we obtain

32'
direct approximations to | and 3;-3¥— (the displacement and moments in elasticity
e

problems) .
In order to apply Theorem 1 we must check (2.1), (2.2), (2.5), and (2.6). (2.1)
and (2.2) are immediate. In light of (4,30), the proof of (2.5) is similar to the proof
of (2.5) for the method in Subsection a. Finally we consider (2.6). Let ¢ ¢ W, be
given. By Theorem 3 we know there is a v ¢ Sh such that
‘j‘ W oe Ve dx > Il\:ltg'h
and :

IVl y S C ey o

B3 RLET Pt Ee, o

Ll g

—
A

o




0
Now let Vv = [ : o ] . We immediately have v « wh .
v, . %
b (V,¢) = AL
e 9x. ox,
i, 3 @ j i

BIVV'VsTdX
Q

2
"“"2,h ,

|v

and

I T
ety < (zi,j"vijuo.h) <alen, .

This proves (2.6).
We are now ready to apply Theorem 1 to analyze the Herrmann-Miyoshi method. This

application is essentially the same as that in Subsection a. We use the approximabilit:y
results in Lemma 3, as modified for matrix-valued functions with the aid of (4.30), and
in Lemma 4. We will just state the results.

Suppose Y € Hr(Q), r > 3. Then

(4.32) N =g+ 0y = wl, < RS20l
and
(4.33) Mo = by <cn®h

where s = min(r,k+l). From (4.32) we obtain
s=2
(4.34) la - ghﬂo SCh "w"s .
Estimates (4.33) and (4.34) improve on those in Brezzi-Raviart [7). Rannacher ([22]
recently obtained these estimates for the case k = 2. Falk=Osborn [12] also proved

these estimates. We further note that (4.32) contains additional information corres-

ponding to the mesh dependent norms (cf. (4.25)).

W
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c) Herrmann-Johnson method

In this subsection we consider a further method for the approximate solution of (4.1)

in which, as in the case treated in Subsection b , the auxiliary variable is the matrix

of second order partials of Y. Also as in Subsection b , the method is based on the

variational formulation (4.31) (the spaces Vh and wh and the forms a, and bh are

the same as in Subsection b).

We now consider the problem Ph with

°
B {v e Vh: vij % € Py v T e Th }

and

3
wh = Sh n HO(Q) 4

This choice leads to the Herrmann-Johnson method [15,16,17). Note that this method

differs from the HerrmanmMiyoshi method only in the choice of the finite dimensional

space Vh .
This example has certain special features which allow an analysis that is rather

different than that employed in the previous two examples. These special features involve

and I We turn

the existence of two particular projection operators denoted by LS h*

to this now.

m_ is defined as in (7, Section 4]. For Vv = (vij) with vij € HllT) and i,

h
v21 we define WTY = (wij) with wij € Pk-l and Wig ® w21 by
i' M (y-myfds=0 ¥fcP , andfor each side T' of T,
(4.35)

£ [vij - (nrg)ij]f éx =0 LA Proo *
By Lemma 3 in [¢], nTY is uniquely determined by (4.35). Now for v « Dh we define

I,

hY€¢%h

(nhy)'T = "T(YLr’

-25~




Since we can write

Ry R e

§ { 3y ¥
g | b (v,») = ; -] [ v, s==—ax+ [M (V) 5o ds} _
: v h e 5 i, T 33 axiaxj ar V v |
| it is clear that

(4.36) b (v - T V) =0 ¥V vel .

Concerning the approximation of y by = v we have

h
" - o
3 Lemma 6. Suppose v ¢ " 2(Q)]4 n Vh » ¥ >3. Then

L
(4.37) my v =l ccnivly

for 1 < & < min(k,r=2).
Proof. In Lemma 4 of [7] it is shown that
L
Hwhy - Y"o <Ch "Y"g

Thus it remains to show that

2

th [ |Mry-wvl%a9? <cntiw, .
r h . - &

h

Let T ¢ Th and assume T is the image of T under the mapping F(x) = Bx + b.
Given a matrix valued function w(x) on T we set w(x) = C w (F(x)) Ct, XxXeT , where

<1 -
C =B . (Note that the correspondence between (matrix valued) functions on T and on T

is different than the one introduced in Section 3.) Recall that vy = CtG[Bt\’I ((3.5)).

Then we have

2 2

a'.'![ M (v - wT\_r)I ds = Zl i' IM\)(Y - 1) |“ds
i

= Zi f lvt(y = ﬂT\!)vlzds

Ti |
‘. = Zi / IGt c B(\E - w,f,w}) (F'l(x))stcf‘\}ﬁstv[‘ds

B T:
1

IA

4 ~ A 12 &
[B:1] maxl'rj'_la£ |mg (v=m_9) | “as

2

A 4 -
2 C(T)h, I8l Iylm,
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4
Fhrany

2
%,T

2092y 04 qet B|7F Jo]

< c(Mh_ I8l
4 A 6
: C(T)hy T4 o

= 2(2+2)
o m

20-1 2
h 'YIQ,T -

Hence

h [ My - nhy)lzds b ;T h |MV(Y - nTg)lzds
Th T

[

2% 2
Ch lle,Q .

This completes the proof.

The second projection operator Eh is the interpolation operator Ih introduced in

o
Section 3. As in the proof of Lemma 5 in [7], for v ¢ Vh and ¢ € Hz(ﬂ) n H;(Q) we

can write
azv

(4.38) b v, =J ) o[ g vax+ ] Jatrr,viv @s + ] Bla,vel(a)

RS Rl T'eI T aed

h h
where Ih is the set of all sides of the triangulation 7&, Jh is the set of all vertices
of Th + and A(T',v) is a polynomial of degree less than or equal to k-2 in the
azvi.

: J : P
variable s . Since for v € vh we have 8xi3xj . € Pk-3 and A(T',v) € pk-z' it
follows from (4.38) that Zhw = Ih ¢, as defined in Section 3, satisfies
(4.39) bh(g, Zh ¢ -9) =0 V¥V Ve vh .

Now we are ready to derive the error estimates. First we estimate |lu - Eh"o .
Subtracting (2.4a) from (2.3a) we obtain
(4.40) ah(g - gh,g) + bh(! ' ¥ -wh) =0 ¥ vev, .
Suppose VvV € Z

2{w eVv,:b(wy) =0 ¥ vc¢ uh). Then, from (4.39) we see that

h hih o«

B (v,¢) = b (v,5,¢) = 0 for all ¢ ¢ H2(2)n Hy(Q). Hence from (4.40) we have
(4.41) ah(g = gh,y) =0 L4 vez .

Subtracting (2.4b) from (2.3b) and using (4.36) we see that

b(mu=-w,) =blu-u, =0 ¥V ¢cW ,

i.e., LU zh. Thus, recalling (4.41),

=27~
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Vo wd?

= wm - y)

p ~h"0 h
=a (u-~ gh,(g = gh) = g~ gh))
=a (u - it = )
<l - ghll 0II\3 - -nh\gllo
and hence
(4.42) fg - wl) <limu - gll0 ;

Suppose now that ¢ ¢ Hr('Q) + ¥ >3 . Then from (4.42) and Lemma 6 we have
s
(4.43) lha Eh“o < C holiyll ais
where s = min (k,r-2).
Now we estimate (| ~ wh . As in Subsection a we can write

(4.44) (d,w-wh)o = -ah(\g—gh.vg-g) - bh(g-g,w-wh) - bh(g-gh,e—u) ¥ (z,u) € v, = W,

where 6 is the solution of

Aze =d ¢ L2 on Q
6 = %% =0 on T
a%e
and wij ol g 4 We note that (w,8) satisfies
i)
(w,v) + b (v,8) =0 ¥ vel
(4.45) iy A h

b, (w,¢) --é dpax ¥ ¢l
(cf. (4.31)). 1In (4.44) let 2z = ™ W and u=1L6 . This gives
(4.46) @ y=9)) = -a, (@ - w, w-mnw - by (w=m w,y=¢,} - b, (u-u,,8-Z 6)
Ve now estimate each term in (4.46).
Using (4.36), (4.39), (4.45), and Lemma 3 we have

(4.47) Ibh (W=7 w,y=0,) | = lbh(g-nhg,w-zhw) |

lbn (w, V=2, ¥) |

| @, v-z, 0 |
N -z, vl
s
c K% il Nai

[

Ia

where s = min(r-1,k+l).
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In our estimate for the third term on the right side of (4.46) we treat the cases

k>2 and k=1 separately. First assume k > 2. Then, using (4.26), (4.39), and

Lemmas 4 and 6, we find that

(4.48) b, (u-u, ,6-2,0) | = [bh(g-nhg,e-xhe)l
< Cllu=myull o=z 6, | 3
<ot niely i
ccniiul_,, lalg

where s = min(r-1,k+1). Now suppose k = 1. Then,using (4.26), (4.31), (4.39), and

Lemma 3 we have

(4.49) |bh(g-\_xh,e—zhe)| = |bh(\3.9-2h6)| g

2 s

= | (8%, 6-5,0) | %

2 &

; < ha%ul gy o=z, ol ;

2 .2 i

< C RTNATY el i

! 2 8
! <c iyl Nai, . g
@
4 Finally, using (4.26), (4.42), and Lemma 6 we obtain ?
§

(4.50) lah(g-\_lh.\g-whg)l < Moyl Mw=m ll
s
SChlull, , Nal
where s = min(k+l,r-1).

Combining (4.46)-(4.50) we have

i l(@,v-v) |
i (4.51) y - Wil = sup
l: dELz Hd“o
| <Ch® i, » s =min(kel,r-1), if k > 2
and
2
‘. g =
(4.52) o = wlly <€ 0% vl , if k=1,
One can also prove that 1
(4.53) e = wlly <¢© " i ol , s =min(r,kel), if k> 2
and
X (4.54) o = wlly < Chilvly v it k=1,

~29~




Estimate (4.53) improves on estimates in (7]. Estimates (4.43), (4.51)-(4.53)

-
S ——

are given in (7], and (4.43) and (4.51)-(4.54) are proved in [12).
Remarks : 1) As in Subsection b we could have shown that the method studied here is

stable with respect to the norm |l “0 S I M2 h ! and then obtained error estimates in
’ ’

T

this norm. This approach would have allowed the treatment of the case when
1

S € (Hi )' - H(R) (cf. the next to the last paragraph in Subsection a). However,
due to the special nature of this example, more refined estimates can be obtained by
the analysis sketched above in the case when sufficient regqularity of the solution is

assumed. Thus the mesh dependent norms play a less central role in the analysis of

this method than in previous methods. They are, however, convenient; their use leads

to a very natural setting for the study of this example. {

2) The analysis in this subsection was based on the projections LS and th and

the fact that

5 2 1
ZycZz{w:wel ,blwy) =0 ¥ veH (A aH D]

which follows from the existence of zh . For a general discussion of the projections

h and Zh and the condition z, < Z see Falk and Osborn (12] and Fortin (13]. ;

3) In this subsection the mesh family is not required to be quasi~-uniform.

R e Tl

.
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